Math, asked by duragpalsingh, 11 months ago

\sqrt{2\sqrt{4\sqrt{5\sqrt{9\sqrt{x-2} } } } } = 16

Find the value of x.

Answers

Answered by Anonymous
7

\sqrt{2\sqrt{4\sqrt{5\sqrt{9\sqrt{x-2} } } } } = 16

we known that

sqrt 4 = 2 and -2

sqrt9 = 3 and -3

Now

 \sqrt{4 \sqrt{15 \sqrt{x - 2} } }  = 16

again

2 \sqrt{15 \sqrt{x - 4} }  = 16

on dividing both side by 2 we get

 \sqrt{15 \sqrt{x - 4} }  = 8

on sqiring both side we get

15 \sqrt{x - 4}  = 64

again on sqiring we get

x - 4 =  \frac{ {64}^{2} }{225}

x =  \frac{4096}{225}  + 4

so

x =  \frac{4096 + 900}{225}

x =  \frac{4996}{225}

Answered by Mysteryboy01
0

\sqrt{2\sqrt{4\sqrt{5\sqrt{9\sqrt{x-2} } } } } = 16

 \sqrt{ 4\sqrt{ 15\sqrt{x - 2} } }  = 16

2 \sqrt{15 \sqrt{ x - 4} }  = 16

Divide  \: Both \:  Side  \: by  \: 2

 \sqrt{ 15\sqrt{x - 4} }  =8

Squaring \:  both \:  sides

15 \sqrt{x - 4}  = 64

Again  \:  \: Squaring

 \:  \:  \:  \: x - 4 =  \frac{ {(64)}^{2} }{225}  \\  \\ \:  \:  \:  \:  x =  \frac{4  ,096}{225}  + 4 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{4  ,096 + 900}{225}  \\ \\   \ \:  \:  \: \ x =  \frac{4  ,996}{225}

Similar questions