Math, asked by xyz565, 11 months ago


 \sqrt{2} {x}^{2}  - 3x - 2 \sqrt{2}
Solve this and find the value of x​

Answers

Answered by Anonymous
4

Step-by-step explanation:

 \sqrt{2}  {x}^{2}  - 3x - 2  \sqrt{2}  \\  \\  \sqrt{2}  {x}^{2}  - 4x + x - 2 \sqrt{2}  \\  \\ ( \sqrt{2}  {x}^{2}  - 4x) + (x - 2 \sqrt{2} ) \\  \\  \sqrt{2} x(x - 2 \sqrt{2} ) + 1(x - 2 \sqrt{2} )  \\  \\ ( \sqrt{2} x + 1)(x - 2 \sqrt{2} )  = 0\\  \\   \sqrt{2} x + 1 = 0 \: or \: x - 2 \sqrt{2}  = 0 \\  \\  \sqrt{2} x =  - 1 \: or \: x = 2 \sqrt{2}  \\  \\ x =  \frac{ - 1}{ \sqrt{2} }  \: or \: x = 2 \sqrt{2}

Similar questions