Math, asked by meetkakkar90, 10 months ago


 \sqrt{2} x ^{2}  - + 7x + 5 \sqrt{2}  = 0

Answers

Answered by Anonymous
17

\huge{\boxed{\red{\star\;Answer}}}

\large{\underline{\blue{\star\;Note}}}

  • If ax^{2}+bx+c is a quadratic equation then the roots of quadratic equation are given by ,

  • x\;=\;-b+\;or-\;\dfrac{\sqrt{b^{2}-4ac}}{2a}

\underline{\pink{Given\;equation\;\sqrt{2}x^{2}+7x+5\sqrt{2}}}

  • Using the above formula, by Comparing the terms,
  • a = \sqrt{2}
  • b = 7
  • c = 5(\sqrt{2})

\underline{\pink{Substituting\;in\;formula}}

  • x\;=\;-b+\;or-\;\dfrac{\sqrt{b^{2}-4ac}}{2a}

  • x\;=\;-7+\;or-\;\dfrac{\sqrt{7^{2}-4(\sqrt{2})(5\sqrt{2})}}{2(\sqrt{2})}

  • x\;=\;-7+\;or-\;\dfrac{\sqrt{49-40}}{2(\sqrt{2})}

  • x\;=\;-7+\;or-\;\dfrac{\sqrt{9}}{2(\sqrt{2})}

  • x\;=\;-7+\;or-\;\dfrac{3}{2\sqrt{2}}

\boxed{\red{The\; required\;values\;of\;x\;are\;x=-7+\dfrac{3}{2\sqrt{2}}\;and\;x=-7-\dfrac{3}{2\sqrt{2}}}}

Similar questions