Math, asked by muskan4387, 1 year ago


 \sqrt{248 +  \sqrt{52 +  \sqrt{144} } }  \\  =

Answers

Answered by charliejaguars2002
4

Answer:

\Large\boxed{16}

Step-by-step explanation:

Given:

√248+√52+√144

\Large\boxed{\textnormal{ESTIMATING (SOLVE) SQUARE ROOTS}}

To solve this problem, first you have to estimating by the square root.

Solutions:

First, solve with square roots.

\displaystyle \sqrt{52+\sqrt{144} }

12^2=12*12=144

\displaystyle \sqrt{12^2}

Used radical rule.

\Large\boxed{\textnormal{RADICAL RULES}}

\displaystyle \sqrt[N]{A^N}=A

\displaystyle \sqrt{12^2}=12

Rewrite the problem down.

\displaystyle \sqrt{52+12}

Add.

\displaystyle 52+12=64

\displaystyle \sqrt{64}

Find the factor of 64.

\displaystyle 8^2=8*8=64

\displaystyle \sqrt{8^2}

\displaystyle \sqrt{8^2}=8

\displaystyle \sqrt{248+8}

Add.

\displaystyle 248+8=256

\displaystyle \sqrt{256}

\displaystyle 16^2=16*16=256

\displaystyle \sqrt{16^2}

Solve.

\displaystyle \sqrt{16^2}=\boxed{16}

\large\boxed{16}

Therefore, the correct answer is 16.

Similar questions