Math, asked by parinitagohainbaruah, 6 months ago


 \sqrt{2x - 1}  +  \sqrt{3x - 2}  =  \sqrt{4x - 3}  +  \sqrt{5x - 4}
solve

Answers

Answered by shadowsabers03
6

Given,

\longrightarrow\sqrt{2x-1}+\sqrt{3x-2}=\sqrt{4x-3}+\sqrt{5x-4}

\longrightarrow\sqrt{2x-1}-\sqrt{5x-4}=\sqrt{4x-3}-\sqrt{3x-2}

Squaring both sides,

\longrightarrow(\sqrt{2x-1}-\sqrt{5x-4})^2=(\sqrt{4x-3}-\sqrt{3x-2})^2

\longrightarrow7x-5-2\sqrt{(2x-1)(5x-4)}=7x-5-2\sqrt{(4x-3)(3x-2)}

\longrightarrow(2x-1)(5x-4)=(4x-3)(3x-2)

\longrightarrow10x^2-13x+4=12x^2-17x+6

\longrightarrow2x^2-4x+2=0

\longrightarrow x^2-2x+1=0

\longrightarrow(x-1)^2=0

\longrightarrow\underline{\underline{x=1}}

Hence solved!

Answered by Anonymous
124

♣ Qᴜᴇꜱᴛɪᴏɴ :

\sf{Value\:\:of\:\:x\:\:in:\sqrt{2x-1}+\sqrt{3x-2}=\sqrt{4x-3}+\sqrt{5x-4}}

★═══════════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\huge\boxed{\bf{x=1}}

★═══════════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\mathrm{Rewrite\:the\:equation\:with\:}\sqrt{2x-1}=u\mathrm{\:and\:}x=\dfrac{u^2+1}{2}

\sf{u+\sqrt{3\left(\dfrac{u^2+1}{2}\right)-2}=\sqrt{4\left(\dfrac{u^2+1}{2}\right)-3}+\sqrt{5\left(\dfrac{u^2+1}{2}\right)-4}}

\boxed{\bf{u=1}}

\mathrm{Substitute\:back}\:u=\sqrt{2x-1},\:\mathrm{solve\:for}\:x

\text { Solve } \sqrt{2 x-1}=1

\text { Square both sides: }

(\sqrt{2x-1})^2=2x-1

1^2=1

\huge\boxed{\bf{x=1}}

Similar questions