Math, asked by namanshah13, 11 months ago


 \sqrt{2x + 6}  - \sqrt{x + 1}  = 2

Answers

Answered by riya1290
8

{} \huge \mathfrak \green{solution - }

 \sqrt{2x + 6}  -  \sqrt{x + 1}  = 2 \\  \sqrt{2x + 6}  = 2 +  \sqrt{x + 1}  \\ squaring \: both \: side -   \\ 2x + 6 = 4 + (x + 1) + 2 \times 2 \sqrt{x + 1}

2x + 6 = 4 + x + 1 + 4 \sqrt{x + 1} \\ 2x - x + 6 - 5 = 4 \sqrt{x + 1}   \\ x + 1 = 4 \sqrt{x + 1}  \\ again \: squaring \: both \: side -  \\  {x}^{2}  + 1 + 2x = 16(x + 1) \\  {x}^{2}  + 1 + 2x = 16x + 16

 {x}^{2}  - 15 - 14x = 0 \\  {x}^{2}  - 14x - 15 = 0 \\  {x}^{2}  - (15 - 1)x - 15 = 0 \\  {x}^{2}  - 15x  + x - 15 = 0 \\ x(x - 15) + 1(x - 15) = 0 \\ (x + 1)(x - 15) \\ x =  - 1 \\ x = 15

Similar questions