Math, asked by sumitlabade07, 15 hours ago


 \sqrt{2x}  +  \sqrt{5y}  = 16
Is the equation a linear equation in 2 variables?
Answer with full explaination​

Answers

Answered by ZaraAntisera
2

Answer:

\mathrm{solve\:for\:x,\:\sqrt{2x}+\sqrt{5y}=16\quad :\quad x=\frac{256-32\sqrt{5}\sqrt{y}+5y}{2}\space\left\{0\le \:y\le \frac{256}{5}\right\}}

Step-by-step explanation:

\sqrt{2x}+\sqrt{5y}=16

\sqrt{2x}+\sqrt{5}\sqrt{y}=16

\mathrm{Subtract\:}\sqrt{5}\sqrt{y}\mathrm{\:from\:both\:sides}

\sqrt{2x}+\sqrt{5}\sqrt{y}-\sqrt{5}\sqrt{y}=16-\sqrt{5}\sqrt{y}

\sqrt{2x}=16-\sqrt{5}\sqrt{y}

2x=256-32\sqrt{5}\sqrt{y}+5y

x=\frac{256-32\sqrt{5}\sqrt{y}+5y}{2}

\mathrm{The\:solution\:is}

x=\frac{256-32\sqrt{5}\sqrt{y}+5y}{2}\space\left\{0\le \:y\le \frac{256}{5}\right\}

Similar questions