Math, asked by shivaniAcharya, 8 months ago


 \sqrt{3}  - 1    \div  \sqrt{3 }  + 1 = a  + b \sqrt{3}

Answers

Answered by TheNarayan
3

Step-by-step explanation:

▪️√3-1\√3+1=a-b√3

▪️(Rationalize the denominator)

▪️In LHS(left hand side)

In LHS(left hand side)= (√3-1)(√3-1)\(√3+1)(√3-1)= 3+1-2√3\3-1=4-2√3\2

▪️(Taking 2 common from numerator)

(Taking 2 common from numerator)=2-√3 (1)

▪️In RHS

▪️a-b√3. (2)

▪️A.T.Q(according to question)

▪️(1)=(2)

▪️2-√3=a-b√3 (Comparing both equations)

2-√3=a-b√3 (Comparing both equations)So, a=2,b=1.

Hopes it help you❤️❤️

Answered by Anonymous
0

Step-by-step explanation:

 \frac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1}  =( a + b) \sqrt{3}  \\ rationalise \: the \: denominator \\  \frac{ {( \sqrt{3}  - 1)}^{2} }{3 - 1}  = (a + b) \sqrt{3}   \\  \fbox{ a + b =  \frac{ ({ \sqrt{3}  - 1})^{2} }{2 \sqrt{3} }} \\

Similar questions