Math, asked by devilrrao, 1 year ago


 \sqrt[3]{11025}  \times  \sqrt[3]{2835}

Answers

Answered by 3140
2

Answer:

(11025×2835)^1/3

= (5×5×7×7×9 × 5×9×9×7) ^ 1/3

= (5^3 × 7^3 × 9^3) ^ 1/3

= [(315)^3]^1/3

= 315

Step-by-step explanation:

Answered by AbhijithPrakash
3

Answer:

\sqrt[3]{11025}\sqrt[3]{2835}=315

Step-by-step explanation:

\sqrt[3]{11025}\sqrt[3]{2835}

\gray{\mathrm{Factor\:integer\:}11025=3^2\times \:5^2\times \:7^2}

=\sqrt[3]{3^2\times \:5^2\times \:7^2}\sqrt[3]{2835}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}}

\gray{\sqrt[3]{3^2\times \:5^2\times \:7^2}=\sqrt[3]{3^2}\sqrt[3]{5^2}\sqrt[3]{7^2}}

=\sqrt[3]{3^2}\sqrt[3]{5^2}\sqrt[3]{7^2}\sqrt[3]{2835}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}}

\gray{\sqrt[3]{3^2}=3^{2\times \dfrac{1}{3}},\:\sqrt[3]{5^2}=5^{2\times \dfrac{1}{3}},\:\sqrt[3]{7^2}=7^{2\times \dfrac{1}{3}}}

=3^{2\times \dfrac{1}{3}}\times \:5^{2\times \dfrac{1}{3}}\times \:7^{2\times \dfrac{1}{3}}\sqrt[3]{2835}

\gray{\mathrm{Refine}}

=3^{\dfrac{2}{3}}\times \:5^{\dfrac{2}{3}}\times \:7^{\dfrac{2}{3}}\sqrt[3]{2835}

\gray{\mathrm{Factor\:integer\:}2835=3^4\times \:5\times \:7}

=3^{\dfrac{2}{3}}\times \:5^{\dfrac{2}{3}}\times \:7^{\dfrac{2}{3}}\sqrt[3]{3^4\times \:5\times \:7}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}}

\gray{\sqrt[3]{3^4\times \:5\times \:7}=\sqrt[3]{3^4}\sqrt[3]{5}\sqrt[3]{7}}

=3^{\dfrac{2}{3}}\times \:5^{\dfrac{2}{3}}\times \:7^{\dfrac{2}{3}}\sqrt[3]{3^4}\sqrt[3]{5}\sqrt[3]{7}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}}

\gray{\sqrt[3]{3^4}=3^{4\times \dfrac{1}{3}}}

=3^{\dfrac{2}{3}}\times \:5^{\dfrac{2}{3}}\times \:7^{\dfrac{2}{3}}\times \:3^{4\times \dfrac{1}{3}}\sqrt[3]{5}\sqrt[3]{7}

\gray{\mathrm{Refine}}

=3^{\dfrac{2}{3}}\times \:5^{\dfrac{2}{3}}\times \:7^{\dfrac{2}{3}}\times \:3^{\dfrac{4}{3}}\sqrt[3]{5}\sqrt[3]{7}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}}

\gray{3^{\dfrac{2}{3}}\times \:3^{\dfrac{4}{3}}=\:3^{\dfrac{2}{3}+\dfrac{4}{3}}}

=5^{\dfrac{2}{3}}\times \:7^{\dfrac{2}{3}}\times \:3^{\dfrac{2}{3}+\dfrac{4}{3}}\sqrt[3]{5}\sqrt[3]{7}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}}

\gray{5^{\dfrac{2}{3}}\sqrt[3]{5}=\:5^{\dfrac{2}{3}}\times \:5^{\dfrac{1}{3}}=\:5^{\dfrac{2}{3}+\dfrac{1}{3}}}

=7^{\dfrac{2}{3}}\times \:3^{\dfrac{2}{3}+\dfrac{4}{3}}\times \:5^{\dfrac{2}{3}+\dfrac{1}{3}}\sqrt[3]{7}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}}

\gray{7^{\dfrac{2}{3}}\sqrt[3]{7}=\:7^{\dfrac{2}{3}}\times \:7^{\dfrac{1}{3}}=\:7^{\dfrac{2}{3}+\dfrac{1}{3}}}

=3^{\dfrac{2}{3}+\dfrac{4}{3}}\times \:5^{\dfrac{2}{3}+\dfrac{1}{3}}\times \:7^{\dfrac{2}{3}+\dfrac{1}{3}}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^mb^m=\left(ab\right)^m}

\gray{5^{\dfrac{2}{3}+\dfrac{1}{3}}\times \:7^{\dfrac{2}{3}+\dfrac{1}{3}}=\left(5\times \:7\right)^{\dfrac{2}{3}+\dfrac{1}{3}}}

=3^{\dfrac{2}{3}+\dfrac{4}{3}}\left(5\times \:7\right)^{\dfrac{2}{3}+\dfrac{1}{3}}

\gray{\mathrm{Multiply\:the\:numbers:}\:5\times \:7=35}

=3^{\dfrac{2}{3}+\dfrac{4}{3}}\times \:35^{\dfrac{2}{3}+\dfrac{1}{3}}

\gray{3^{\dfrac{2}{3}+\dfrac{4}{3}}=3^2}

=3^2\times \:35^{\dfrac{2}{3}+\dfrac{1}{3}}

\gray{35^{\dfrac{2}{3}+\dfrac{1}{3}}=35}

=3^2\times \:35

\gray{3^2=9}

=9\times \:35

\gray{\mathrm{Multiply\:the\:numbers:}\:9\times \:35=315}

=315

Similar questions