Math, asked by Deepak4IND, 10 months ago


 \sqrt{3 - 2 \sqrt{2} }

Answers

Answered by arvindhan14
0

Answer:

We \:  \: can \:  \: write \:  \: 3 \: \:  as \:  \: 2 + 1 \:  \:  \:  \: and \: \:  write \:  \:  \sqrt{2}  \:  \: as \:  \:  \sqrt{2}  \times  \sqrt{1}

 =  \sqrt{2 + 1  -  2 \sqrt{2}  \sqrt{1} }

 =   \sqrt{ { (\sqrt{2}) }^{2}  +  {( \sqrt{1} )}^{2}   -  2 \sqrt{2}  \sqrt{1} }

 {x}^{2}  +  {y}^{2}  - 2xy \:  =  \:  {(x - y)}^{2}

 =  \sqrt{ { (\sqrt{2}  -  \sqrt{1}) }^{2} }

We can cancel square and square root.

Therefore \:  \: the \:  \: final \: \:  anwer \:  \: is \:  \sqrt{2}  - \sqrt{1}

Similar questions