Math, asked by guptavedant74, 7 months ago


 \sqrt{3 - 2 \sqrt{2} }
Simply it ​

Answers

Answered by Anonymous
1

Answer:

  = >  \sqrt{2}  - 1

Explanation:

Here =>\sqrt{3 - 2 \sqrt{2} }

 Let's \: expand \:  =  >  \sqrt{2 + 1 - 2 \sqrt{2} }

 =  \sqrt{( \sqrt{2} ) {}^{2} + (1) {}^{2} - 2 \times 1 \times  \sqrt{2}   }

 We \: all \: know \: that \\ a {}^{2}  - 2ab + b {}^{2}   = (a - b) {}^{2}

 Therefore \:  \sqrt{3 - 2 \sqrt{2} }  \\  =    \sqrt{(\sqrt{2}  - 1) {}^{2} }

 = (( \sqrt{2}  - 1) {}^{2}  ){}^{ \frac{1}{2} }

 = ( \sqrt{2}  - 1) {}^{2 \times  \frac{1}{2} }

that \: is \:  =  >  \sqrt{2}  - 1

Hope this works!!! <( ̄︶ ̄)>

Similar questions