Math, asked by Dragerzkiller, 1 year ago


 \sqrt[3]{2}
 \sqrt[4]{5}
 \sqrt[6]{7}
 \sqrt[12]{3}
Aarrenge them in descending order​

Answers

Answered by Anonymous
5

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\underline{\huge\mathcal{\bf{\boxed{\huge\mathcal{~~QUESTION~~}}}}}}}

  •  \sqrt[3]{2}
  •  \sqrt[4]{5}
  •  \sqrt[6]{7}
  •  \sqrt[12]{3}

Aarrenge them in descending order

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\underline{\huge\mathcal{\bf{\boxed{\huge\mathcal{!!ANSWER!!}}}}}}}

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\large\mathcal{\bf{\boxed{\large\mathcal{ \sqrt[4]{5}  >  \sqrt[6]{7}  >  \sqrt[3]{2}  >  \sqrt[12]{3} }}}}}

______________________________________________

 \:\:  \underline{\underline{\bf{\large\mathfrak{~~solution~~}}}}

 \sqrt[3]{2} = 2 {}^{ \frac{1}{3} } = (2 {}^{8}  )  {}^{ \frac{1}{24} } = 256 {}^{ \frac{1}{24} }   \\  \sqrt[4]{5}  = 5 {}^{ \frac{1}{4} } = (5 {}^{6} )  {}^{ \frac{1}{24} }  = 15625 {}^{ \frac{1}{24} }  \\  \sqrt[6]{7}  = 7 {}^{ \frac{1}{6} }  = (7 {}^{4}) {}^{ \frac{1}{24} }  = 2401 {}^{ \frac{1}{24} }    \\  \sqrt[12]{3} = 3 {}^{ \frac{1}{12} }  =( 3 {}^{2}  ) {}^{ \frac{1}{24} }  = 9 {}^{ \frac{1}{24} }  \\

now.....

the ...LCM of (3,4,6,12)=24

now...

therefore the answer is ....

 \sqrt[4]{5}  >  \sqrt[6]{7}  >  \sqrt[3]{2}  >  \sqrt[12]{3}

\huge\mathcal\green{\underline{hope\:\: this\:\: helps\:\: you}}

Similar questions