Math, asked by vishu0003, 7 months ago


 \sqrt{3}  {m }^{2}  - 8m +  \sqrt{48 }  = 0

Answers

Answered by Anonymous
1

Answer:

m=2\sqrt{3} ,m= \frac{2\sqrt{3} }{3}

Step-by-step explanation:

\sqrt{3}m^2 - 8m + \sqrt{48}  = 0\\

now, let us use quadratic formula,

x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

discriminant:

                              \sqrt{b^2-4ac} = \sqrt{(-8)^2-4\sqrt{3}\cdot4\sqrt3 } = \sqrt{16} =4

now, 4 >0 so the equation has two distinct real roots.

now using quadratic formula:

m = \frac{8+4}{2\sqrt{3} } =\frac{12}{2\sqrt{3} }=\frac{12\sqrt{3} }{2\sqrt{3} \cdot\sqrt{3} }  = 2\sqrt{3}

or

m = \frac{8-4}{2\sqrt{3} }  = \frac{4}{2\sqrt{3} } = \frac{2}{\sqrt{3} } =\frac{2\sqrt{3} }{\sqrt{3} \cdot\sqrt{3} } = \frac{2\sqrt{3} }{3}

pls mark as brainliest

Similar questions