Math, asked by harshvasava6755, 10 months ago


 \sqrt{3}  \tan(2x)  =  \cos(60) + sin45  \times  \cos(45) to \: find \: x
​tan 2x = COS 60° + sin 45° cos 45° હોય,
તો સની કિંમત શોધો.​

Answers

Answered by Anonymous
3

Step-by-step explanation:

 \sqrt{3} tan(2x) = cos60^{o}  + sin45^{o}  \times cos45^{o}  \\  \\  \\  =  >  \sqrt{3} tan(2x) =     \frac{1}{2}  +  \frac{1}{ \sqrt{2} }  \times  \frac{1}{ \sqrt{2} }  \\  \\  =  >  \sqrt{3} tan(2x) =  \frac{1}{2}  +  \frac{1}{2}  \\  \\  \\  =  >  \sqrt{3} tan(2x) =  \frac{2}{2}  \\  \\  \\  =  >  \sqrt{3} tan(2x) = 1 \\  \\  \\  =  >  tan(2x) =  \frac{1}{ \sqrt{3} }  \\  \\  =  > tan(2x) = tan30 ^{o}  \\  \\  \\  =  > 2x = 30 \\  \\  =  > x = 15

please mark me brainlist ✔️✔️

Similar questions
Math, 5 months ago