Math, asked by maths2249, 9 months ago

 \sqrt{3} \: is a irrational number.
Prove it.​

Answers

Answered by CrEEpycAmp
83

{\fbox{\boxed {\huge{\rm{\red{Answer}}}}}}

Step-by-step explanation:

 \: \Huge\bold\blue{Solution} \:

 \rightarrow \:   \mathtt{ \sqrt{3}} \:   =   \large\mathtt {\frac{p}{q} }

 \rightarrow  \:  \mathtt{3} =   \large\mathtt{ \frac{ {p}^{2} }{ {q}^{2} } } \:  \rightarrow(square \: both)

 \rightarrow \mathtt{ {3q}^{2} } =  \mathtt{ {P}^{2} }

 \rightarrow \large\mathtt{3 \: divides \: by \:  {P}^{2} } \\  \:  \:  \:  \:  \:   \: \large \mathtt{3 \: divides \: by \: { P}^{2} }

 \rightarrow \mathtt{Let \: P = 3m} \\  \:  \:  \: \:  \:  \:  \:    \mathtt{ {3q}^{2} } =  \mathtt{(3m) {}^{2} } \\  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{ {q}^{2}}  =   \mathtt{  \cancel\frac{9m {}^{2} } {3} }

 \: \bold{From\: (2)\: and\: (3)\: 3\: is \: a\: comman\: factor\: of \:P \:and\: Q.} \:

\: \bold{So  \sqrt{3} \: is \: a\: irrational \:number.} \:

{\boxed{\huge{\red{\mathtt{BeBrainly}}}}}

Similar questions