Math, asked by chaitanyagovind, 1 year ago

\sqrt{34+24\sqrt{2} }  * 4-3\sqrt{2}

Answers

Answered by pratyush4211
14

\sqrt{34+24\sqrt{2} }  \times  4-3\sqrt{2}

 \sqrt{34 + 24 \sqrt{2} }

Can be Written as

 =34 + 24 \sqrt{2}  \\  \\  = 16 + 18 + 24 \sqrt{2}  \\  \\  =  {4}^{2}  + ( 3 \sqrt{2})  {}^{2}  + 24 \sqrt{2}  \\  \\  =  {4}^{2}  + (3 \sqrt{2} ) {}^{2}  + 2 \times 4 \times 3 \sqrt{2}

As we know

(a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 {4}^{2}  + (3 \sqrt{2} ) {}^{2}  + 2 \times 4 \times 3 \sqrt{2}  \\  \\  = (4 + 3 \sqrt{2} ) {}^{2}

It was Underoot

 \sqrt{(4 + 3 \sqrt{2} ) {}^{2} }  \\  \\ (4 + 3 \sqrt{2} ) {}^{2 \times  \frac{1}{2} }  \\  \\ 4 + 3 \sqrt{2}

Now We have to Multiply it with

4-3√2

(4 + 3 \sqrt{2} )(4 - 3 \sqrt{2} ) \\  \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\  \\  {4}^{2} - (3 \sqrt{2})   {}^{2}  \\  \\ 16 - 9 \times 2 \\  \\ 16 - 18 \\  \\  =  - 2

\boxed{\mathbf{\huge{Answer=-2}}}


pratyush4211: is it right
Similar questions