Math, asked by vinitajain62, 11 months ago


 \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5}
simplify.​

Answers

Answered by naina5451
1

\huge{\underline{\red{\mathcal{AnsWer}}}}

Refer attachment.

➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡

\huge{\boxed{\mathbb\pink{\fcolorbox{red}{purple}{Thanks}}}}

Attachments:
Answered by Anonymous
5

Answer:

√5

Step-by-step explanation:

Given : {\sf{\ \ {\sqrt{45}} - 3 {\sqrt{20}} + 4 {\sqrt{5}} }}

____________________________

Prime Factorisation of 45 :

→ 3 × 3 × 5

____________________________

Prime Factorisation of 20 :

→ 2 × 2 × 5

____________________________

On further solving the problem, we get

{\sf{ {\sqrt{3 \times 3 \times 5}} - 3 {\sqrt{2 \times 2 \times 5}} + 4 {\sqrt{5}} }}

{\sf{ 3 {\sqrt{5}} - 3 \times 2 {\sqrt{5}} + 4 {\sqrt{5}} }}

Rearranging the terms, we get

{\sf{ 3 {\sqrt{5}} + 4 {\sqrt{5}} - 6 {\sqrt{5}} }}

{\sf{ 7 {\sqrt{5}} - 6 {\sqrt{5}} }}

{\boxed{\sf{ {\sqrt{5}} }}}

Similar questions