Answers
Answer:
The sum of the 2 positive square is 765. The square of the 1st number is greater than the other number by 3.
\Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}†
ToFind:−
The numbers
\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}†
Solution:−
The sum of the 2 positive square numbers is 765.
First,
Let the 1st number be x and 2nd number be y.
According to the question,
x² + y² = 765
Second,
The square of 1st number is greater than the other by 3.
This implies that,
x = y + 3
x² = (y + 3)²
x² = y² + 9 + 6y
Substituting x² = y² + 9 + 6y in x² + y² = 765,
x² + y² = 765
y² + 9 + 6y + y² = 765
2y² + 6y + 9 = 765
2y² + 6y = 765 - 9
2y² + 6y = 756
2y² + 6y - 756 = 0
2 (y² + 3y - 378) = 0
y² + 3y - 378 = 0
Using PSF method,
P = - 378 * y² = - 378y²
S = + 3y
F = + 21 y , - 18 y
Now,
y² + 21y - 18y - 378 = 0
y (y + 21) - 18 (y + 21) = 0
(y + 21) (y - 18) = 0
y + 21 = 0 , y - 18 = 0
y = - 21 , y = + 18
Since, numbers cannot be negative.
y = 18
Now,
x = y + 3
x = 18 + 3
x = 21
Therefore,
\underline{\boxed{\purple{\tt{The \: two \: numbers \: are \: 21 \: and \: 18.}}}}
Thetwonumbersare21and18.
\Large{\bf{\blue{\mathfrak{\dag{\underline{\underline{Verification:-}}}}}}}†
Verification:−
x² + y² = 765
21² + 18² = 765
441 + 324 = 765
765 = 765
LHS = RHS
Hence, verified.
⚽️ According to question:-
- HOPE IT HELPS YOU...
- MARK AS BRAINLIEST...
- FOLLOW ME...
- THANKS MY ANSWERS...