Math, asked by oneashokofficial, 2 months ago


 \sqrt{5 +  \sqrt[2]{6} }  +  \sqrt{8 -  \sqrt[2]{15 } }
simplify​

Answers

Answered by SrijanShrivastava
1

 \sqrt{5 +  \sqrt{6} }  +  \sqrt{8 -   \sqrt{15}  }

Use, this Relation:

 \sqrt{x  \pm \sqrt{y} }  =  \sqrt{ \frac{x +  \sqrt{ {x }^{2}  - y} }{2} }  \pm \sqrt{ \frac{x -  \sqrt{ {x}^{2}  - y} }{2} }

You can easily prove this with some simple algebra

 \sqrt{5 +  \sqrt{6} }  =  \sqrt{ \frac{5 +  \sqrt{25 - 6} }{2} }  +  \sqrt{ \frac{5 -  \sqrt{25 - 6} }{2} }

 \sqrt{5 +   \sqrt{6}  }  =  \sqrt{ \frac{5 +  \sqrt{19} }{2} }  +  \sqrt{ \frac{5 -  \sqrt{19} }{2} }

therefore, its not possible to Denest this square root.

 \sqrt{8 -  \sqrt{15} }  = \sqrt{ \frac{8  +  \sqrt{64  - 15} }{2} }  \small{ - }\sqrt{ \frac{8 -  \sqrt{64 - 15} }{2} }

 \sqrt{8 - \sqrt{15} }  =  \sqrt{ \frac{8  +  7}{2} }  -  \sqrt{ \frac{8 - 7}{2} }

 \sqrt{8 -  \sqrt{15} }  =  \sqrt{ \frac{15}{2} }  -  \sqrt{ \frac{1}{2} }  =  \frac{ \sqrt{30}  -  \sqrt{2} }{2}

Therefore, Your answer is

 \boxed{ \sqrt{5 +   \sqrt{6}  }  +  \sqrt{8 -  \sqrt{15} }  =  \sqrt{5 +  \sqrt{6} }  +  \frac{ \sqrt{30} -  \sqrt{2}  }{2} }

Similar questions