Math, asked by tanusinghfaujdar, 9 months ago


  \sqrt{5}  +  \sqrt{3}  \div  \sqrt{5} -  \sqrt{3}   = a + b \sqrt{15}
find out a and b​

Answers

Answered by Anonymous
16

Answer:

a = 4 , b = 1

Step-by-step explanation:

 \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{ 3} }  \:  = a + b \sqrt{15}  \\  =    \frac{( \sqrt{5} +  \sqrt{3} ) ( \sqrt{5} +  \sqrt{3}  )}{( \sqrt{5} -  \sqrt{3} ) ( \sqrt{5}  +  \sqrt{3}) }  \\  =  \frac{ {( \sqrt{5}  +  \sqrt{3} )}^{2} }{ { (\sqrt{5} )}^{2} -  {( \sqrt{3}) }^{2}  }   \\  =    \frac{ {( \sqrt{5} )}^{2}  +  {( \sqrt{3}) }^{2}  + 2 \times  \sqrt{5}  \times  \sqrt{3} }{5 - 3}  \\  =  \frac{5 + 3 + 2 \sqrt{15} }{2}  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  = 4 +  \sqrt{15}

Hope it helps you.....

PLEASE FOLLOW ME.....

Answered by pyarip
1

Answer:

plz follow me...........

Attachments:
Similar questions