Math, asked by gaurav2002kosliya, 2 months ago


 \sqrt{5 \sqrt{5 \sqrt{5 \sqrt{5} } } }  =

Answers

Answered by Anonymous
6

Question:-

Find  \sqrt{5 \sqrt{5 \sqrt{5 \sqrt{5} } } } = .

Answer:-

 \sqrt{5 \sqrt{5 \sqrt{5 \sqrt{5} } } } =

=  {5}^{ \frac{1}{2} }  \times  {5}^{ \frac{1}{4} } \times  {5}^{ \frac{1}{8} } \times  {5}^{16}

{As ⁿ√a^m = a^(m/n).}

=  {5}^{ \frac{8 + 4 + 2 + 1}{16} }

=  {5}^{ \frac{15}{16} } (ans.)

More:-

If you had to evaluate

 \sqrt{5 \sqrt{5 \sqrt{5 \sqrt{5 \sqrt{... \infty } } } } } ,

Let,   \sqrt{5 \sqrt{5 \sqrt{5 \sqrt{... \infty } } } }  = x

So,

 \sqrt{5.x} = x

=>  x^2 = 5x (by SBS)

=>  x = 5 .

So then, the value would have become 5.

Similar questions