Math, asked by puja668822, 8 hours ago


 \sqrt{56 \ +  \sqrt{x} }  = 8 \:
find x

please give answer as soon as possible​

Answers

Answered by sadnesslosthim
48

Given :-

\sf  \sqrt{56 + \sqrt{x} } = 8

To Find :-

Value of x

Solution :-

\sf : \; \dashrightarrow \sqrt{56 + \sqrt{x} } = 8

\sf : \; \dashrightarrow ( \sqrt{56 + \sqrt{x} })^{2} = 8^{2}

\sf : \; \dashrightarrow \sqrt{( \sqrt{x} + 56 })^{2} = (2^{3})^{2}

\sf : \; \dashrightarrow \sqrt{( \sqrt{x} + 56 })^{\frac{2}{2}} = 2^{3 \times 2}

\sf : \; \dashrightarrow \sqrt{x} + 56 = 2^{6}

\sf : \; \dashrightarrow \sqrt{x} + 56 = 64

\sf : \; \dashrightarrow \sqrt{x} = 64 - 56

\sf : \; \dashrightarrow \sqrt{x}  = 8

\sf : \; \dashrightarrow x = 8^{2}

\begin{gathered}{\underline{\underline{\bigstar{\large{\textsf{\textbf{\red{ x = 64 }}}}}}}}\end{gathered}

Similar questions