Math, asked by ranvijayshyamgaya, 11 months ago


 \sqrt{5x ^{2} }  + 2x + 3 \sqrt{5}

Answers

Answered by Anonymous
28

Correct Question

√5x² + 2x - 3√5

Solve it

Solution

=> √5x² + 2x - 3√5 = 0

Solve by splitting middle term

=> √5x² + 5x - 3x - 3√5 = 0

=> √5x(x + √5) -3(x + √5) = 0

=> (x + √5)(√5x - 3) = 0

Either

=> x + √5 = 0

=> x = -√5

Or

=> √5x - 3 = 0

=> √5x = 3

=> x = 3/√5

Alternative method

Applying quadratic formula

√5x² + 2x - 3√5 = 0

a = √5 b = 2 c = -3√5

x = -b ± √b² - 4ac/2a

x = -2 ± √(2)² - 4*√5*(-3√5)/2×√5

x = -2 ± √4 + 60/2√5

x = -2 ± √64/2√5

x = -2 ± 8/2√5

x = -2+8/2√5 , -2-8/2√5

x = 6/2√5 , -10/2√5

x = 3/√5 , -√5

Hence, 3/5 and -5 are the zeros of given polynomial

Answered by chillwildlife
10

Answer:

here is your answer mate!

see attachment

Attachments:
Similar questions