Math, asked by ansh258, 10 months ago


 \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... =  \infty } } }
is equal to

Answers

Answered by CharmingPrince
47

\huge{\underline{\mathfrak{\green{Answer}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \sqrt{6 + \sqrt{6 + \sqrt{6 + ...  \infty } } }

\boxed{\bold{\red{Assume\:that:}}}

 \sqrt{6 + \sqrt{6 + \sqrt{6 + ...  \infty } } }  = x

\boxed{\bold{\red{Then:}}}

 \sqrt{6 + \sqrt{6 + \sqrt{6 + ...  \infty } } } = x

\boxed{\red{\bold{Squaring \:both\: sides:}}}

 6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + ...  \infty } } } = x^2

 6 + x = x^2

 x^2 - x - 6 = 0

x^2 - 3x + 2x - 6 = 0

x(x - 3) + 2(x - 3) = 0

\boxed{\bold{\red{By\:Grouping \:Method:}}}

(x - 3)(x - 2) = 0

 x = 3 \; or\; x = -2

Root \:can \:never \:be \:negative\: ,\: so \:x = 3

Hence ,  \sqrt{6 + \sqrt{6 + \sqrt{6 + ... \infty } } }  = 3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by humera98765
0

Step-by-step explanation:

√{6 + x} = x

6 + x = x²

x² - x - 6 = 0

x² - 3x + 2x - 6 = 0

x(x - 3) + 2(x - 3) = 0

(x + 2)(x - 3) = 0

x = - 2, 3

because x ≠ -2 { square root can't be negative.}

Similar questions