Math, asked by chumkeyacharya, 5 months ago


 \sqrt{6 +  \sqrt{6  + \sqrt{6 +  \sqrt{6} } } }...  \infty   =

Answers

Answered by anindyaadhikari13
2

Required Answer:-

Given to evaluate:

  •  \sf \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6..... \infty } } } }

Solution:

Let us assume that,

 \sf \implies x =  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6..... \infty } } } }

Squaring both sides, we get,

 \sf \implies  {x}^{2} =  6 +\sqrt{6 +  \sqrt{6 +  \sqrt{6..... \infty } } }

As x = √(6+√(6+...∞), So,

 \sf \implies  {x}^{2} =  6 + x

 \sf \implies  {x}^{2}  - x - 6= 0

 \sf \implies  {x}^{2} -  3x  + 2x- 6= 0

 \sf \implies  x(x - 3)  + 2(x - 3)= 0

 \sf \implies  (x + 2)(x - 3)= 0

Therefore, either x + 2 = 0 or x - 3 = 0

 \sf \implies  x =  - 2, 3

But x cannot be negative. So,

 \sf \implies x = 3

Hence, the sum of the nested infinite radical is 3.

Answer:

  • Result is: 3.
Answered by HorridAshu
9

Answer:

Required Answer:-

Given to evaluate:

\sf \sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6..... \infty } } } }

Solution:

Let us assume that,

\sf \implies x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6..... \infty } } } }

Squaring both sides, we get,

As x = √(6+√(6+...∞), So,

\sf \implies {x}^{2} = 6 +\sqrt{6 + \sqrt{6 + \sqrt{6..... \infty } } }

Similar questions