Math, asked by 025shivamtiwari, 1 year ago


 \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6 + .......} } } } }
plz solve with solution for brainlist​

Answers

Answered by Anonymous
95

Question

 \tt{ \sqrt{6   + \sqrt{6 +  \sqrt{6 +  \cdots} }  }}

Solution

 \tt{Let \: y =  \sqrt{6   + \sqrt{6 +  \sqrt{6 +  \cdots \infty} }  } -  -  - (1)}

Implies,

 \tt{y =  \sqrt{6 + ( \sqrt{6 +  \sqrt{6 +   \cdots} } } )}

From equation (1),we write,

 \tt{ \longrightarrow \:y =  \sqrt{6 + y}} \\

Squaring on both sides :

 \longrightarrow \:  \tt{ {y}^{2} = 6 + y } \\  \\ \tt{ \longrightarrow \:   {y}^{2} - y - 6 = 0 } \\  \\  \tt{ \longrightarrow \: y {}^{2} - 3y + 2y - 6 = 0  } \\  \\  \tt{ \longrightarrow \: (y  +  2)(y  -  3) = 0 } \\  \\  \longrightarrow \:  \boxed{ \boxed{\tt{y =  - 2 \: or \: 3}}}

Now,

y can't be a negative number as it is a square root and real number. Thus,y = 3

Therefore,

 \tt{ \sqrt{6   + \sqrt{6 +  \sqrt{6 +  \cdots} }  } = 3}


tejasgupta: Nice one!
Answered by Anonymous
15

\bold{\huge{\underline{\underline{\sf{AnsWer:}}}}}

\sf{\pink{Value\: of\:the\: infinite\: series\: is\:3}}

\bold{\large{\underline{\underline{\sf{StEp\:by\:stEp\:explanation:}}}}}

\sqrt{6 + \sqrt{6 +\sqrt{6 + \sqrt{6 +\sqrt{6 + .......}}}}}

★ We notice that √6 occurs again and again. We infer that it is an infinite series.

Let x = \sqrt{6\:+{\sqrt{6\:+\:{\sqrt{6\:+....{\infty\:\:\:}}}}}}---> (1)

x = \sqrt{6\:+\:({\sqrt{6\:+\:{\sqrt{6\:+\:....{\infty)}}}}}}

★ From equation (i)

x = \sqrt{6\:+\:x}

Squaring both sides,

\tt{x^2\:=\:6+x}

\tt{x^2\:-\:6\:-\:x\:=\:0}

★ We formed a quadratic equation in variable x.

\tt{x^2\:-\:3x\:+\:2x\:-\:6\:=\:0}

\tt{x(x-3) \:+\:2\:(x-3)\:=\:0}

\tt{(x-3)\:\:or\:\:(x+2)\:\:=\:0}

\tt{x-3=0\:\:or\:\:x+2=0}

\tt{x=3\:\:or\:\:x\:=\:-2}

★ Since x is a square root and a real number, therefore value of x must be positive.

\tt{\therefore{x\:=\:-2\:is\:not\:acceptable}}

\bold{\boxed{\red{\tt{\therefore{x\:=\:3\:is\:\:the\:value\:of\:the\:given\:infinte\:series}}}}}

Shortcut trick :

[Trick applicable only for numbers whose factor difference is 1]

To solve in a short way :

★ Find the factors of the number given in the question whose difference is 1.

In the above question, we have √6.

Ignore the square roots, factors of 6 are : 3, 2

Difference between the factors :3 - 2 = 1

★ Since the question contains + sign, we have to go for the larger factor of the given number, ignoring the smaller one.

So the factor of 6, i.e 3 & 2, the larger of the two numbers is 3.

And we are done with our solution!

Either way we got the same value,3.

★ If the question contains - (minus) sign, choose the smaller factor ignoring the larger one.

# Shinchan_Lover ❤️

"\bold{\large{\boxed{\blue{\rm{I\:Love\:You\:,\:Dipali\:Dii\:♡}}}}}

Similar questions