Math, asked by joshebpintu, 1 year ago


 \sqrt{6 +  \sqrt{6 +  \sqrt{6 + .......} } }

Answers

Answered by Anonymous
1

Answer \:  \:  \\  \\ Given \:  \: Question \:  \: Is \:  \:  \\  \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... \infty } } } }  \\  \\ let \:  \:  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6...  \infty } } } }  = x \\  \\  \sqrt{6 +  \sqrt{ 6 +  \sqrt{6 + ... \infty } } }  = x \\  \\  \sqrt{6 + x}  = x \\  Squaring \:  \: on \: both \: sides \: we \: have \\  \\ ( \sqrt{6 + x} ) {}^{2}  = x {}^{2}  \\  \\ 6 + x = x {}^{2}  \\  \\ x {}^{2}  - x - 6 = 0 \\  \\ x {}^{2}  - 3x + 2x - 6 = 0 \\  \\ x(x - 3) + 2(x - 3) = 0 \\  \\ (x - 3) = 0 \:  \:  \:  \:  \: or \:  \:  \:  \: (x + 2) = 0 \\  \\ x = 3 \:  \:  \: or \:  \:  \: x =  - 2 \\  \\ x =  - 2 will be rejected  \: becoz \:  \: domain \: or \: input \: of \:  \\ square \: root \: function \: is \: set \: of \: real \: numbers \\  \\ so \:  \:  \: x = 3 \\  \\ therefore \:  \:  \: sum \: of \: this \: series \: is \:  \: 3

Similar questions