Math, asked by aayesha88, 6 months ago


 \sqrt{6x + 7 }  \:  - (2x - 7) = 0

Answers

Answered by Anonymous
71

Step-by-step explanation:

 \sqrt{6x + 7}  - (2x - 7) = 0 \\  =  >  \sqrt{6x + 7}  = 2x - 7 \\  =  > 6x  +  7 =  {(2x - 7)}^{2}  \\  =  > 6x + 7 =  {(2x)}^{2}  - 2 \times 2x \times 7 \:  +  {(7)}^{2}  \\  =  > 6x + 7 = 4 {x}^{2}  - 28x \:  + 49 \\  =  > 4 {x}^{2}  - 28x - 6x + 49 - 7  = 0 \\  =  > 4 {x}^{2}  - 34x + 42 = 0 \\  =  > 2 {x}^{2}  - 17x + 21 = 0 \\  =  > 2 {x}^{2}  - 14x - 3x + 21 = 0 \\  =  > 2x(x - 7) - 3(x - 7) = 0 \\   =  > (x - 7)(2x - 3) = 0 \\  =  > x = 7 \\ x =   \frac{3}{2}

Similar questions