Answers
Step-by-step explanation:
I think question is like this
If x = √ (7 + 4 √3 ) then find (x + 1/x )
Solution--->
x = √ (7 + 4√3 )
= √{ 4 + 3 + 2 ( 2 ) (√3) }
= √ {(2)² + (√3)² + 2 (2) (√3 ) }
We have an identity
a² + b² + 2 a b = ( a + b )², applying it here
= √ ( 2 + √3 )²
x = (2 + √3 )
Now
1 / x = 1 / (2 + √3 )
multiplying in numerator and denominator by conjugate of denominator which is (2 - √3 ) we get
= (2 - √3 ) / (2 + √ 3 ) ( 2 - √3 )
We have an identity
a² - b² = ( a + b ) ( a - b )
Applying it in denominator we get
= ( 2 - √3 ) / { ( 2 )² - ( √3 )² }
= (2 - √3 ) / (4 - 3 )
= (2 - √3 ) / 1
= ( 2 - √3 )
Now
x + 1/x = ( 2 + √3 ) + ( 2 - √3 )
+(√3 )and (- √3 ) cancel out each other and we get.
= 2 + 2
= 4
Answer:
Step-by-step explanation:
x = √7 + 4√3
1/x = 1/(√7 + 4√3)
1/x = (√7 - 4√3) / (√7 + 4√3) (√7 - 4√3)
1/x = (√7 - 4√3)/ ((√7)^2 - (4√3)^2)
1/x = (√7 - 4√3) / (7 -48)
1/x = -((√7 - 4√3)/41)
x + 1/x = (√7 + 4√3) + (-(√7 - 4√3)/41)
= (√7 + 4√3) - (√7 - 4√3)/41
= (41(√7 + 4√3) - (√7 - 4√3))/41
= {41√7 - √7 + 164√3 + 4√3}/41