Math, asked by skbabuskm1977, 11 months ago


 \sqrt{8 }  -  \sqrt{x}  =  \sqrt{x}  -  \sqrt{4} findx \:

Answers

Answered by rajnitiwari192003
1

Answer:

√8-√x = √x-√4

2√2-√x=√x-2

2√2-2=√x+√x

2(√2-1)=2√x

√x=√2-1

squaring on both sides

x=(√2-1)²

using ( a-b) ²=a ²+b²-2ab

x=(√2)²+(1)-2(√2)(1)

x=2+1-2√2

x=3-22

Answered by Anonymous
0

given Question:

 \sqrt{8}  - \sqrt{x} = \sqrt{x} - \sqrt{4} \:

 \sqrt{x}  +  \sqrt{x}  =   -  \sqrt{8}  -  \sqrt{4}

2 \sqrt{x}  =  - ( \sqrt{8}    +  \sqrt{4} )

squaring both the side

 {(2 \sqrt{x} )}^{2}  =  -  {( \sqrt{8} -  \sqrt{4} ) }^{2}

4x =  - (8  + 4 + 2 \sqrt{32} )

4x = -  12 - 8 \sqrt{2}

x =  \frac{ - (12 + 8 \sqrt{2}) }{4}

hope it help ✔

Similar questions