Answers
Answer:
Answer:
Hyy there
Answer:
\begin{gathered} \sqrt{(8x + 13)} + \sqrt{(2x - 3)} = 5 \\ \\ on \: \: squaring \: \: both \: \: sides \\ = > 8x + 13 + 2x - 3 + 2 \sqrt{6x + 10} = 5 \\ = > 6x + 10 + 2 \sqrt{6x + 10} = 5 \\ = > 2 \sqrt{6x + 10} = - 6x - 5 \\ = > \sqrt{6x + 10} = \frac{ - 6x - 5}{2} \\ \\ on \: squaring \: both \: sides \\ = > 6x + 10 = (36 {x}^{2} + 60x + 25) \div 4 \\ = > 24x + 40 = 36 {x}^{2} + 60x + 25 \\ = > 36 {x}^{2} + 36x - 15 = 0 \\ = > 12 {x}^{2} + 12x - 5 = 0 \\ on \: \: application \: \: of \\ quadratic \: \: formula \\ x = \frac{ - 12( + - ) \sqrt{384} }{24} \end{gathered}
(8x+13)
+
(2x−3)
=5
onsquaringbothsides
=>8x+13+2x−3+2
6x+10
=5
=>6x+10+2
6x+10
=5
=>2
6x+10
=−6x−5
=>
6x+10
=
2
−6x−5
onsquaringbothsides
=>6x+10=(36x
2
+60x+25)÷4
=>24x+40=36x
2
+60x+25
=>36x
2
+36x−15=0
=>12x
2
+12x−5=0
onapplicationof
quadraticformula
x=
24
−12(+−)
384