Math, asked by samirdhali592, 4 months ago


{ \sqrt{8x + 13 \:  \:  } }  + { \sqrt{2x - 3}}  \:  \:  \:  \: equals \: to \: 5 \\  \\find \: the \:  \:value \: of \: x \:  and \: prove \: it

Answers

Answered by snehaprajnaindia204
6

Answer:

 \sqrt{(8x + 13)}  +  \sqrt{(2x - 3)} = 5 \\  \\ on \:  \: squaring \:  \: both \:  \: sides \\  =  >  8x + 13 + 2x - 3 + 2 \sqrt{6x + 10}  = 5 \\  =  > 6x + 10 + 2 \sqrt{6x + 10}  = 5 \\  =  > 2 \sqrt{6x + 10}  =  - 6x - 5 \\  =  >  \sqrt{6x + 10}  =  \frac{ - 6x - 5}{2}  \\   \\ on \: squaring \: both \: sides \\  =  > 6x + 10 = (36 {x}^{2}  + 60x + 25) \div 4 \\  =  > 24x + 40 = 36 {x}^{2}  + 60x + 25 \\  =  > 36 {x}^{2}  + 36x - 15 = 0 \\  =  > 12 {x}^{2}  + 12x - 5 = 0 \\  on \:  \: application \:  \: of  \\ quadratic \:  \: formula \\ x =  \frac{ - 12( +  - ) \sqrt{384} }{24}

Answered by ayushbehera70
2

Answer:

Hyy there

Answer:

\begin{gathered} \sqrt{(8x + 13)} + \sqrt{(2x - 3)} = 5 \\ \\ on \: \: squaring \: \: both \: \: sides \\ = > 8x + 13 + 2x - 3 + 2 \sqrt{6x + 10} = 5 \\ = > 6x + 10 + 2 \sqrt{6x + 10} = 5 \\ = > 2 \sqrt{6x + 10} = - 6x - 5 \\ = > \sqrt{6x + 10} = \frac{ - 6x - 5}{2} \\ \\ on \: squaring \: both \: sides \\ = > 6x + 10 = (36 {x}^{2} + 60x + 25) \div 4 \\ = > 24x + 40 = 36 {x}^{2} + 60x + 25 \\ = > 36 {x}^{2} + 36x - 15 = 0 \\ = > 12 {x}^{2} + 12x - 5 = 0 \\ on \: \: application \: \: of \\ quadratic \: \: formula \\ x = \frac{ - 12( + - ) \sqrt{384} }{24} \end{gathered}

(8x+13)

+

(2x−3)

=5

onsquaringbothsides

=>8x+13+2x−3+2

6x+10

=5

=>6x+10+2

6x+10

=5

=>2

6x+10

=−6x−5

=>

6x+10

=

2

−6x−5

onsquaringbothsides

=>6x+10=(36x

2

+60x+25)÷4

=>24x+40=36x

2

+60x+25

=>36x

2

+36x−15=0

=>12x

2

+12x−5=0

onapplicationof

quadraticformula

x=

24

−12(+−)

384

Similar questions