Math, asked by bangtanboys95, 20 hours ago

\sqrt { \dfrac { 1 - \cos \theta } { 1 + \cos \theta } } =

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Consider,

\rm \:  \sqrt{\dfrac{1 - cos\theta }{1 + cos\theta } }

So, on rationalizing the denominator, we get

\rm \:  =  \:  \sqrt{\dfrac{1 - cos\theta }{1 + cos\theta }  \times \dfrac{1 - cos\theta }{1 - cos\theta } }

We know

\boxed{\tt{ (x - y)(x + y) =  {x}^{2} -  {y}^{2} \: }} \\

So, using this identity, we get

\rm \:  =  \:  \sqrt{\dfrac{ {(1 - cos\theta )}^{2} }{ {1}^{2} -  {cos}^{2}\theta } }

\rm \:  =  \:  \dfrac{1 - cos\theta }{ \sqrt{1 -  {cos}^{2}\theta  } }

We know,

\boxed{\tt{  {sin}^{2}\theta  +  {cos}^{2}\theta  = 1 \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{1 - cos\theta }{ \sqrt{ {sin}^{2} \theta } }

\rm \:  =  \: \dfrac{1 - cos\theta }{ sin\theta  }

\rm \:  =  \: \dfrac{1}{ sin\theta  }  \:  -  \: \dfrac{cos\theta }{sin\theta }

\rm \:  =  \: cosec\theta  \:  -  \: cot\theta

Hence,

\rm\implies \: \boxed{\tt{  \: \sqrt{ \frac{1 - cos\theta }{1 + cos\theta } }   =  \: cosec\theta  \:  -  \: cot\theta \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by TheBestWriter
2

 \bold{ \: solution }\\  \to  consider  \\  \  \sqrt{ \frac{1 - cos \theta}{1 + cos \theta} }  \\  \\  \sf \: so \: on \: rationalizing \: the \: denominator \\  \sf \: we \: get \\  \\   : \to  \sqrt{ \frac{1 - cos \theta}{1 + cos \theta} \times \:  \frac{1 -  \cos \theta }{1 -  \cos \theta }   }  \\  \\  \bold{  : : we \:  \: know} \\  \\  \boxed{(x - y)(x + y) =  {x}^{2} -  {y}^{2}  } \\  \\  \sf \: so \: using \: the \: identity \: we \: get \\  \to \:  \frac{1 -  \cos \theta }{ \sqrt{ {sin}^{2}  \theta} }  \\  \\  \sf \: so \: using \: this \: identity \: we \: get \\  \\  \to \:  \sqrt{ \frac{(1 -  \cos \theta) ^{2}  }{ {1}^{2}  - cos ^{2}  \theta} }  \\  \\  \to \:  \frac{1 - cos \theta}{ \sqrt{1 -  {cos}^{2}  \theta} }  \\  \\  \bold{we \: know} \\  \\  \to \: sin ^{2}  \theta \:  +  {cos}^{2}  \theta \:  = 1 \\  \\  \sf \: so \: using \: this \: identity \: we \: get \:  \\

= 1/-cos∅/√sin²∅

= 1-cos∅/sin∅

= 1/sin∅ - cos∅/sin∅

= cosec∅ - cot∅

Hence

=

 :  \to \sqrt{ \frac{1 - cos \theta}{1 + cos \theta} }  = cosec\theta \:  - cot \theta

Similar questions