Math, asked by Niranjana2017, 9 hours ago

\sqrt\dfrac{ 1 + sin\   \theta}{1 - sin\  \theta}~is~equal~to

• with full explanation​

Answers

Answered by NITESH761
1

Answer:

 \rm\sec θ + \tan θ

Step-by-step explanation:

\tt\sqrt\dfrac{ 1 + \sin \theta}{1 - \sin \theta}

\tt\sqrt{\dfrac{ 1 + \sin \theta}{1 - \sin \theta}×\dfrac{ 1 + \sin \theta}{1 +\sin \theta}}

\tt\sqrt{\dfrac{ (1 + \sin \theta)^2}{1 - \sin ^2 \theta}}

\tt \dfrac{ 1 + \sin \theta}{ \cos  \theta}

\tt \dfrac{ 1 }{ \cos  \theta}+\dfrac{  \sin \theta}{ \cos  \theta}

 \rm\sec θ + \tan θ

Similar questions