is equal to
(a) sec θ + tan θ
(b) sec θ − tan θ
(c) sec²θ + tan²θ
(d) sec²θ− tan² θ
Answers
Answer:
√(1 + sinθ)/(1 − sinθ) = sec θ+ tan θ
Among the given options option (a) sec θ + tanθ is correct.
Step-by-step explanation:
Given :
√(1 + sinθ)/(1 − sinθ)
= √[(1 + sinθ) × √(1 + sinθ)] / [√(1 -sinθ) × √(1 + sinθ) ]
[By rationalising]
= √(1 + sinθ)²/√(1 - sin²θ)
[By using an identity , (a + b) (a - b) = a² - b²]
= (1 + sinθ)/√cos²θ
[By using the identity, (1- sin²θ) = cos²θ
= (1 + sinθ)/cosθ
= 1/cosθ + sinθ/cosθ
= secθ + tanθ
[By using , secθ = 1/ cosθ & tanθ = sinθ/cosθ]
√(1 + sinθ)/(1 − sinθ) = sec θ + tan θ
Hence, √(1 + sinθ)/(1 − sinθ) = sec θ + tan θ
HOPE THIS ANSWER WILL HELP YOU...
Answer:
a
Step-by-step explanation:
Just rationalise.
√ (1+sinθ) √(1+sinθ)
-------------- x ---------------
1 - sinθ (1+sinθ)
(1+sinθ)
= ---------------
cosθ
= secθ + tanθ