Math, asked by aryanpjd, 8 months ago


 \sqrt{ \ {sec}^{2}  }  + \sqrt{ {cosec}^{2} }  =  \tan +  \cot
plz give step by step explanation​

Answers

Answered by Anonymous
0

Question:-

\sqrt{{Sec}^{2}+{Cosec}^{2}} = tan + cot.

Please give step by step explaination.

Answer:-

Given,

\sqrt{{Sec}^{2}+{Cosec}^{2}}

Solution,

\sqrt{{sec}^{2}+{cosec}^{2}}

\implies \sqrt\dfrac{1}{{cosec}^{2}}+\dfrac{1}{{Sin}^{2}}

\implies \sqrt\dfrac{{sin}^{2}+{cosec}^{2}}{{cosec}^{2}.{sin}^{2}}

\implies \sqrt\dfrac{1}{{cosec}^{2}.{sin}^{2}}

\implies \dfrac{1}{Cosec.Sin}

\implies \dfrac{{cosec}^{2}+{sin}^{2}}{cosec.Sin}

\implies \dfrac{Sin}{cosec} +\dfrac{Cosec}{sin}

\implies Cot + tan

Hence proved.

-Happies!!

Similar questions