Math, asked by GoodCharm, 1 month ago


 \sqrt{ \sf \dfrac{x}{x - 3} }  +  \sqrt{  \sf\dfrac{x - 3}{x} }  =   \sf\dfrac{5}{2}
Please help ASAPPPPPPPPPPPPP​

Answers

Answered by Anonymous
70

Given :

  • \bold {\sqrt{\dfrac{x}{x-3} }+\sqrt{\dfrac{x-3}{x} }=\dfrac{5}{2}   }, To find the possible values of x ?

Solution :

  • Let \bold{\sqrt{\dfrac{x}{x-3} } } be y. Then \bold{\sqrt{\dfrac{x-3}{x} } } will be 1/y.

\rightarrowtail \bold{y+\dfrac{1}{y} =\dfrac{5}{2} }

\rightarrowtail \bold{\dfrac{y(y)+1(1)}{y}=\dfrac{5}{2}  }

\rightarrowtail \bold{\dfrac{y^{2}+1}{y}=\dfrac{5}{2}  }

\rightarrowtail \bold{2(y^{2}+1)=5y}

\rightarrowtail\bold{2y^{2}+2=5y}

\rightarrowtail\bold{2y^{2}-5y+2=0}

\mapsto \bold{2y^{2}-4y-y+2=0}

\mapsto \bold{2y^{2}-y-4y+2=0}

\mapsto \bold{y(2y-1)-2(2y-1)=0}

\mapsto \bold{y-2=0\;or\;(2y-1)=0}

\Rrightarrow \bold{y=2\;or\;y=\dfrac{1}{2} }

Hence, we get :-

\rightarrowtail \bold{\sqrt{\dfrac{x}{x-3} } =2}

Squaring on both the sides :-

\rightarrowtail \bold{\dfrac{x}{x-3}=4 }

\rightarrowtail \bold{4(x-3)=x}

\rightarrowtail \bold{4x-12=x}

\rightarrowtail \bold{3x=12}

\rightarrowtail \bold{x=\dfrac{12}{3} }

\Rrightarrow \bold{x=4}

And also, we get :-

\rightarrowtail \bold{\sqrt{\dfrac{x}{x-3} } =\dfrac{1}{2} }

Squaring on both the sides :-

\rightarrowtail \bold{\dfrac{x}{x-3}=\dfrac{1}{4}  }

\rightarrowtail\bold{1(x-3)=4x}

\rightarrowtail \bold{x-3=4x}

\rightarrowtail \bold{x-4x=3}

\rightarrowtail \bold{-3x=3}

\Rrightarrow \bold{x=-1}

Answer :

  • The possible value of x are 4 or -1.
Similar questions