Math, asked by shettyharshitha015, 17 days ago


 \sqrt \: sinx^{2}
Find dy/dx of sqrt of sinx^2

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Given- }}

\rm :\longmapsto\:y =  \sqrt{sin {x}^{2} }

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{dy}{dx}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  \sqrt{sin {x}^{2} }

On differentiating both sides w. r. t. x we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} \sqrt{sin {x}^{2} }

We know,

\boxed{ \rm{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2 \sqrt{sin {x}^{2} } }\dfrac{d}{dx}sin {x}^{2}

We know,

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2 \sqrt{sin {x}^{2} } } \:  \times cos {x}^{2} \dfrac{d}{dx} {x}^{2}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{cos {x}^{2} }{2 \sqrt{sin {x}^{2} } } \: \dfrac{d}{dx} {x}^{2}

We know,

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{cos {x}^{2} }{2 \sqrt{sin {x}^{2} } } \:  \times 2x

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{x \: cos {x}^{2} }{\sqrt{sin {x}^{2} } } \:

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}cosx =  - sinx}}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2} x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =  -  {cosec}^{2} x}}

\boxed{ \rm{ \dfrac{d}{dx}secx = secx \: tanx}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx = -  \:  cosecx \: cotx}}

\boxed{ \rm{ \dfrac{d}{dx}logx =  \frac{1}{x}}}

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

Similar questions