Math, asked by simranjha278, 2 days ago


( \sqrt{x}  - 1) {}^{2}  = 8 -  \sqrt{28}
find the value of x​

Answers

Answered by user0888
29

First, let's check if the right-hand side is a perfect square of some irrational number.

\text{$\begin{aligned}\cdots\longrightarrow8-\sqrt{28}&=7-2\sqrt{7}+1\\\\&=(\sqrt{7})^{2}-2\sqrt{7}+1\\\\&=\underline{(\sqrt{7}-1)^{2}}.\end{aligned}$}

We have a difference of two perfect squares, so we can use the polynomial identity.

\text{$\cdots\longrightarrow\boxed{a^{2}-b^{2}=(a+b)(a-b)}$}

Then,

\text{$\cdots\longrightarrow\{(\sqrt{x}-1)+(\sqrt{7}-1)\}\{(\sqrt{x}-1)-(\sqrt{7}-1)\}=0$}

\text{$\cdots\longrightarrow\underline{(\sqrt{x}+\sqrt{7}-2)(\sqrt{x}-\sqrt{7})=0}.$}

And then,

\text{$\cdots\longrightarrow\sqrt{x}+\sqrt{7}-2=0$ or $\sqrt{x}-\sqrt{7}=0$}

\text{$\cdots\longrightarrow\underline{\sqrt{x}=2-\sqrt{7}}$ or $\underline{\sqrt{x}-\sqrt{7}=0}$.}

The first equation does not have a positive solution, as the left-hand side and right-hand side have different signs.

\cdots\longrightarrow x=7.

So, the required value is,

\text{$\cdots\longrightarrow\boxed{x=7.}$}

Answered by ItzNobita50
114

\sf\boxed{x=7}

\sf\underline \red{ \bold Question:-}

\longrightarrow( \sqrt{x} - 1) {}^{2} = 8 - \sqrt{28}

 \sf\underline\pink{ \bold To \:   \bold Find:-}

 \longrightarrow  \sf\: to \: find \: the \: value \: of \: x

\sf\underline\green { \bold Solution:-}

It is given that, (√x - 1)² = 8 - √28

⇒(√x - 1)² = 8 - √(2 × 2 × 7)

★ we know, (a ± b)² = a² + b² ± 2ab

so, (√x - 1)² = (√x)² + 1² - 2(1)(√x) = x + 1 - 2√x ]

⇒(x + 1 - 2√x) = 8 - 2√7

⇒x + 1 - 2√x = 8 - 2√7

⇒x - 2√x = 8 - 1 - 2√7

⇒x - 2√x = 7 - 2√7

on comparing both sides, we get

x = 7

also read similar questions:

Explain why the equation ( x - 4 )^2 - 28 = 8 has two solutions. Then solve the equation to find the solutions. Show ...

brainly.in/question/8750862

Similar questions