Math, asked by AKaditya440, 9 months ago


( \sqrt{x + 1 }  +  \sqrt{x - 1})  \div  \sqrt{x + 1}  -  \sqrt{x - 1 = (4x - 1  \div 2
componendo and dividendo​

Answers

Answered by Mora22
0

Answer:

 \frac{ \sqrt{x + 1}  +  \sqrt{x - 1} }{ \sqrt{x + 1} -  \sqrt{x - 1}  }  = (4x - 1 )\div 2

If x/y=a/b

By using componendo dividendo,

 \frac{x + y}{x - y}  =  \frac{a + b}{a - b}

So

 \frac{ \sqrt{x + 1}  +  \sqrt{x - 1}  +  \sqrt{x + 1}  -  \sqrt{x - 1} }{ \sqrt{x + 1}  +  \sqrt{x - 1}   - \sqrt{x + 1 }  +  \sqrt{x - 1}  }  =  \frac{4x - 1 + 2}{4x - 1 - 2}

 \frac{ \sqrt{x + 1} }{ \sqrt{x - 1} }  =  \frac{4x  +  1}{4x - 3}

Squaring on both sides

 \frac{x + 1}{x - 1}  =  \frac{16 {x}^{2}  + 1 + 8x}{16 {x}^{2} + 9 - 12x }

16 {x}^{3}  + 9x - 12 {x}^{2}  + 16 {x}^{2}  + 9 - 12x = 16 {x}^{3}  + x + 8 {x}^{2}  - 16 {x}^{2}  - 1 - 8x

12 {x}^{2}  + 4x + 10 = 0

6 {x}^{2}  + 2x + 5 = 0

Similar questions