Math, asked by sparshgupta499, 3 months ago


 \sqrt{{x}^{2}  - 10x + 24 }  > 0
Find the value of x. Sets question​

Answers

Answered by StormEyes
0

Solution!!

\sf \sqrt{x^{2}-10x+24}>0

Determine the defined range.

\sf \sqrt{x^{2}-10x+24}>0,\:x\in \left<-\infty ,4\right]\cup \left[6, +\infty \right>

Since, the left-hand side is always positive or 0, the statement is true for any value of x, except when \sf \sqrt{x^{2}-10x+24}=0.

\sf

\sf \sqrt{x^{2}-10x+24}=0

\sf x^{2}-10x+24=0

\sf x^{2}-4x-6x+24=0

\sf x(x-4)-6(x-4)=0

\sf (x-4)(x-6)=0

When the product of factors equal 0, atleast one factor is 0.

\sf x-4=0

\sf x-6=0

\sf x=4

\sf x=6

Hence, the inequality is true for any value of x, except when x = 4, x = 6.

\sf x\in R\ \left\{4,6\right\},\:x\in \left<-\infty ,4\right]\cup \left[6, +\infty \right>

\sf x\in \left<-\infty ,4\right>\cup \left<6, +\infty \right>

Similar questions