Math, asked by sandeepvar82com, 7 months ago


 \sqrt{x {}^{2}  + y {}^{2} }  - y \div x -  \sqrt{x {}^{2}  - y {}^{2} }  \div  \sqrt{x {}^{2} - y {}^{2}   }  + x \div  \sqrt{x {}^{2}  + y {}^{2} }  + y \\

Answers

Answered by Anonymous
115

♣ Qᴜᴇꜱᴛɪᴏɴ :

\sf{\sqrt{x^2+y^2}-y\:\div \:x-\sqrt{x^2-y^2}\:\div \sqrt{x^2-y^2}+x\:\div \sqrt{x^2+y^2}+y}

♣ ᴀɴꜱᴡᴇʀ :

\sf{\sqrt{x^2+y^2}-\dfrac{y}{x}-\dfrac{\sqrt{x^2-y^2}}{\sqrt{x^2-y^2}}+\dfrac{x}{\sqrt{x^2+y^2}}+y=\sqrt{x^2+y^2}-\dfrac{y}{x}-1+\dfrac{x\sqrt{x^2+y^2}}{x^2+y^2}+y}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sqrt{x^2+y^2}-\dfrac{y}{x}-\dfrac{\sqrt{x^2-y^2}}{\sqrt{x^2-y^2}}+\dfrac{x}{\sqrt{x^2+y^2}}+y

\mathrm{Apply\:rule}\:\dfrac{a}{a}=1

\dfrac{\sqrt{x^2-y^2}}{\sqrt{x^2-y^2}}=1

=\sqrt{x^2+y^2}-\dfrac{y}{x}-1+\dfrac{x}{\sqrt{x^2+y^2}}+y

\dfrac{x}{\sqrt{x^{2}+y^{2}}}=\dfrac{x \sqrt{x^{2}+y^{2}}}{x^{2}+y^{2}}

\boxed{\sf{=\sqrt{x^2+y^2}-\dfrac{y}{x}-1+\dfrac{x\sqrt{x^2+y^2}}{x^2+y^2}+y}}

Answered by sakshichoudhary844
2

thank you so much sandeep....

i will return you thanks by my second id that is anchal1217....

because this id is in pc.......

so, you can understand how difficult it is to thank......

again thanks a lot.....

Similar questions