Math, asked by kaundilyaprachi, 3 months ago


( \sqrt{x { {}^{3} } }  \times  \sqrt[3]{x {}^{5} } )  \div  \sqrt[5]{x {}^{3   } }  \:  \times  \sqrt[30]{x {}^{77} }

Answers

Answered by animaldk
1

Answer:

\huge\boxed{\left(\sqrt{x^3}\cdot\sqrt[3]{x^5}\right):\sqrt[5]{x^3}\cdot\sqrt[30]{x^{77}}=\sqrt[15]{x^{77}}}

Step-by-step explanation:

a^\frac{m}{n}=\sqrt[n]{a^m}

\left(\sqrt{x^3}\cdot\sqrt[3]{x^5}\right):\sqrt[5]{x^3}\cdot\sqrt[30]{x^{77}}

\sqrt{x^3}=x^\frac{3}{2}\\\\\sqrt[3]{x^5}=x^\frac{5}{3}\\\\\sqrt[5]{x^3}=x^\frac{3}{5}\\\\\sqrt[30]{x^{77}}=x^\frac{77}{30}

\left(\sqrt{x^3}\cdot\sqrt[3]{x^5}\right):\sqrt[5]{x^3}\cdot\sqrt[30]{x^{77}}=\left(x^\frac{3}{2}\cdot x^\frac{5}{3}\right):x^\frac{3}{5}\cdot x^\frac{77}{30}\\\\=x^{\frac{3}{2}+\frac{5}{3}-\frac{3}{5}+\frac{77}{30}}=(*)\\\\\dfrac{3}{2}+\dfrac{5}{3}-\dfrac{3}{5}+\dfrac{77}{30}=\dfrac{3\cdot15}{2\cdot15}+\dfrac{5\cdot10}{3\cdot10}-\dfrac{3\cdot6}{5\cdot6}+\dfrac{77}{30}=\dfrac{45}{30}+\dfrac{50}{30}-\dfrac{18}{30}+\dfrac{77}{30}

=\dfrac{45+50-18+77}{30}=\dfrac{154}{30}=\dfrac{154:2}{30:2}=\dfrac{77}{15}=5\dfrac{2}{15}

(*)=x^\frac{77}{15}=\sqrt[15]{x^{77}}

Similar questions