Math, asked by Sandesh321rauniyar, 1 month ago

(\sqrt{x+a} )/(\sqrt{x-a} )- (\sqrt{x-a} )/(\sqrt{x+a} )=4\sqrt{2}
please find the value of x . step by step please help me

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ value(s) \: of \: x \\  \\ so \: given \: equation \: is \\  \frac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}  -  \sqrt{a} }   \: -   \frac{ \sqrt{x}  -  \sqrt{a} }{ \sqrt{x} +  \sqrt{a}  }  = 4 \sqrt{2}  \\  \\  \frac{(  \sqrt{x}  +  \sqrt{a}  \: )( \sqrt{x}   +  \sqrt{a}) - ( \sqrt{x} -  \sqrt{a}  )( \sqrt{x} -  \sqrt{a})   }{( \sqrt{x}  -  \sqrt{a} )( \sqrt{x}  +  \sqrt{a} )}  = 4 \sqrt{2}  \\  \\  \frac{x + a + 2 \sqrt{ax}  - (x + a - 2 \sqrt{ax} )}{x - a}  = 4 \sqrt{2}  \\  \\  \frac{x + a + 2 \sqrt{ax}  - x - a + 2 \sqrt{ax} }{x - a}  = 4 \sqrt{2}  \\  \\  \frac{2.2 \sqrt{ax} }{x - a}  = 4 \sqrt{2}  \\  \\   \frac{4 \sqrt{ax} }{x - a}  = 4 \sqrt{2}  \\  \\  \frac{ \sqrt{ax} }{x - a}  =  \sqrt{2}

squaring \: both \: sides \\ we \: get \\  \\  \frac{ax}{(x - a) {}^{2} }  = 2 \\  \\ ax = 2(x - a) {}^{2}  \\  \\ ax = 2(x {}^{2}  + a {}^{2}  - 2ax) \\  \\ 2x {}^{2}  + 2a {}^{2}  - 4ax - ax = 0 \\  \\ 2x {}^{2}   - 4ax - ax + 2a {}^{2}  = 0 \\  \\ 2x(x - 2a) - a(x - 2a) = 0 \\  \\ (2x - a)(x - 2a) = 0 \\  \\ 2x - a = 0 \:  \: or \:  \: x - 2a = 0 \\  \\ x =  \frac{a}{2}  \:  \: or \:  \: x = 2a

so \: thus \: here \\ option \: (c) \:  \: is \: correct

Similar questions