Math, asked by AnuRaghav, 9 months ago

\sqrt{y+1}  + \sqrt{y-1} =\sqrt{4y-1} find y

Answers

Answered by IIsahzadiII
2

Answer:

\huge\boxed{\boxed{\red{Solution:-}}}

\bf\sqrt{(y + 1) }-\sqrt{ ( y - 1) }= \sqrt{(4y - 1)}

squaring both sides

\bf\implies{(y + 1) + ( y - 1)} - 2\sqrt{y^2 - 1} = {4y - 1}

\bf\implies{2y} - 2\sqrt{(y^2 - 1)}= {4y - 1}

\bf\implies{2}\sqrt{y^2 - 1} = {4y - 2y -1}

\bf\implies{2}\sqrt{y^2-1} = {2y - 1}

Again squaring both sides.

\bf\implies{4(y^2 -1 ) = 4y^2 - 1 - 4y}

\bf\implies{4y^2 - 4 = 4y^2 - 1 - 4y}

\bf\implies{4y = 5}

\bf\implies{y} =\frac{5}{4}

\bf{\red{\underline{\underline{MuskaŊ}}}}

Similar questions