Math, asked by llReynardll, 3 months ago

\star \: {\red{\bold{Hello...!  :}}}

• Find the value of
 \large  \bigg \{ \frac{ \big( {9}^{n +  \frac{1}{4} } \big) \sqrt{3. {3}^{n} }  }{3 \sqrt{ {3}^{ - n} } }  \bigg \}^{ \frac{1}{n} }  \\  \\

Answers

Answered by vijayaraju112
0

Answer:

In LaTeX backslash is used to generate a special symbol or a command. ... 3√8=813=2, \sqrt[3]{8}=8^{\frac{1}{3}}=2. 2/34/

maths mode :

by H Voß · 2009 · Cited by 1 · Related articles

22-Jan-2009 — 3 \frac{1}{\sqrt{n}}= & \frac{\ sqrt{n}}{n}= & \frac{n. }{n\sqrt{n}}. 4 \end{ eqnarray*}.

Step-by-step explanation:

please mark me as brainlist

Answered by Anonymous
6

To Find :-

• Value of  \sf \large  \bigg \{ \frac{ \big( {9}^{n +  \frac{1}{4} } \big) \sqrt{3. {3}^{n} }  }{3 \sqrt{ {3}^{ - n} } }  \bigg \}^{ \frac{1}{n} }  \\  \\

Solution :-

\\ \\

 \sf \large  \bigg \{ \frac{ \big( {9}^{n +  \frac{1}{4} } \big) \sqrt{3. {3}^{n} }  }{3 \sqrt{ {3}^{ - n} } }  \bigg \}^{ \frac{1}{n} }  \\  \\

 =  \sf \large  \bigg \{ \frac{ \big( {3}^{2(n +  \frac{1}{4}) } \big) \sqrt{ {3}^{n + 1} }  }{3.3 ^{ (\frac{ - n}{2}) } }  \bigg \}^{ \frac{1}{n} }   \\\\

 =  \sf \large  \bigg \{ \frac{ \big( {3}^{(2n +  \frac{1}{2}) } \big) {3}^{ \frac{n + 1}{2} }   }{3 ^{ (\frac{ - n}{2} + 1 )} }  \bigg \}^{ \frac{1}{n} }  \\ \\

  = \sf \large  \bigg \{   {3}^{(2n +  \frac{1}{2} +  \frac{n + 1}{2}  -  (\frac{ - n}{2}  + 1)  } \bigg \}^{ \frac{1}{n} }   \\\\

 =  \sf \large  \bigg \{   {3}^{(2n + \frac{n}{2} +  \frac{n}{2}  +  \frac{1}{2}    +  \frac{1}{2} - 1  } \bigg \}^{ \frac{1}{n} }   \\\\

 =  \sf \large  \bigg \{   {3}^{(2n +n +  \cancel1-  \cancel1  } \bigg \}^{ \frac{1}{n} }   \\\\

  = \sf \large  \bigg \{   {3}^{(3n) } \bigg \}^{ \frac{1}{n} }   \\\\

 =  \sf \large  \bigg \{   {3}^{( \frac{3n}{n} ) } \bigg \}\\\\

 \sf \:  =  {3}^{3}\\\\

 \sf \:  = 27\\

\boxed {\sf {\purple {Required\ value\ is\ 27.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


RISH4BH: Nice :p
Similar questions