Math, asked by Anonymous, 5 hours ago

 \star \: \sf \underline{Evaluate } :-

 \large\sf \frac{sin \: 30°}{cot \: 45°} + \frac{tan \: 45°}{cos \: 60°} - \frac{cosec \: 60°}{sec \: 30°}

Answers

Answered by TrueRider
34

  \color{blue} \star\large \sf \:  \underline{\pink{Solution}} : -

\large \boxed{\sf \frac{sin \: 30°}{cot \: 45°} + \frac{tan \: 45°}{cos \: 60°} - \frac{cosec \: 60°}{sec \: 30°}}

We know that :

 \sf \: sin \: 30° =   \large\frac{1}{2}

 \sf \: tan \: 45° = 1

 \sf \: cosec \: 60° =  \large \frac{2}{ \sqrt{3} }

 \sf \: cot \: 45° = 1

 \sf \: cos \: 60° =  \large \frac{1}{2}

 \sf \: sec \: 30° =  \large \frac{2}{3}

So,

 \boxed{ \sf =  \large  \cancel{\frac{  \:  \: \frac{1}{2} + 1 -  \frac{2}{ \sqrt{3} }  }{ \:  \:  \: 1 +  \frac{1}{2} -  \frac{2}{ \sqrt{3} }   \:  \: } } = 1}

 \:

 \: \: \color{red} \sf \underline{@TrueRider...!}

Similar questions