Science, asked by thapaavinitika6765, 8 months ago

\sum _{n=0}^{\infty }\frac{3}{2^n}

solve it

Answers

Answered by Anonymous
2

\mathrm{Check\:convergence\:of\:}\sum _{n=0}^{\infty \:}\frac{3}{2^n}:\quad 6

Steps

\sum _{n=0}^{\infty \:}\frac{3}{2^n}

\mathrm{Apply\:the\:constant\:multiplication\:rule}:\quad \sum c\cdot a_n=c\cdot \sum a_n

=3\cdot \sum _{n=0}^{\infty \:}\frac{1}{2^n}

\mathrm{Apply\:Series\:Geometric\:Test}:\quad 2

=3\cdot \:2

\mathrm{Simplify}

=6

Answered by Anonymous
2

Explanation:

 \sf \: \sum _{n=0}^{\infty }\frac{3}{2^n} \\  \\  \sf \: \sum _{n=0}^{\infty } \: n \:  = 3 \times 2 \\ \\  \\  \sf \red{ \sum _{n=0}^{\infty } \: n \:  = 6}

Similar questions