Science, asked by thapaavinitika6765, 8 months ago

\sum _{n=1}^{\infty }\frac{\left(-1\right)^n}{n}

Check it

Answers

Answered by Anonymous
2

\mathrm{Check\:convergence\:of\:}\sum _{n=1}^{\infty \:}\frac{\left(-1\right)^n}{n}:\quad \mathrm{converges}

Steps

\sum _{n=1}^{\infty \:}\frac{\left(-1\right)^n}{n}

\mathrm{Apply\:Alternating\:Series\:Test}:\quad \mathrm{converges}

\mathrm{Suppose\:that\:for\:}a_n\mathrm{,\:there\:exists\:an\:}N\mathrm{\:so\:that\:for\:all\:}n\ge N

a_n\mathrm{\:is\:positive\:and\:monotone\:decreasing\:}

\lim _{n\to \infty }a_n=0

\mathrm{Then\:the\:alternating\:series\:}\sum \left(-1\right)^na_n\mathrm{\:and\:}\sum \left(-1\right)^{n-1}a_n\mathrm{\:both\:converge}

\mathrm{By\:the\:alternating\:series\:test\:criteria}

=\mathrm{converges}

Answered by Anonymous
1

Explanation:

\mathrm{Check\:convergence\:of\:}\sum _{n=1}^{\infty \:}\frac{\left(-1\right)^n}{n}:\quad \mathrm{converges}

Steps

\sum _{n=1}^{\infty \:}\frac{\left(-1\right)^n}{n}

\mathrm{Apply\:Alternating\:Series\:Test}:\quad \mathrm{converges}

\mathrm{\sf Then\:the\:alternating\:series\:}\sum \left(-1\right)^na_n\mathrm{\:and\:}\sum \left(-1\right)^{n-1}a_n\mathrm{\:both\:converge}

=\mathrm{converges}

Similar questions