Science, asked by thapaavinitika6765, 7 months ago

\sum _{n=1}^{\infty }nx^n

solve it

Answers

Answered by Anonymous
2

\mathrm{Convergence\:Interval\:of\:}\sum _{n=1}^{\infty \:}nx^n:\quad -1<x<1

Steps

\sum _{n=1}^{\infty \:}nx^n

\mathrm{Use\:the\:Ratio\:Test\:to\:compute\:the\:convergence\:interval}:\quad -1<x<1

\left|\frac{a_{n+1}}{a_n}\right|=\left|\frac{\left(n+1\right)x^{\left(n+1\right)}}{nx^n}\right|

\mathrm{Compute\:}\lim _{n\to \infty \:}\left(\left|\frac{\left(n+1\right)x^{\left(n+1\right)}}{nx^n}\right|\right):\quad \left|x\right|

\mathrm{The\:sum\:converges\:for\:}L<1\mathrm{,\:therefore\:solve\:}\left|x\right|<1

\mathrm{For}\:x=-1,\:\sum _{n=1}^{\infty \:}n\left(-1\right)^n:\quad \mathrm{diverges}

\mathrm{For}\:x=1,\:\sum _{n=1}^{\infty \:}n1^n:\quad \mathrm{diverges}

\mathrm{Therefore,\:the\:convergence\:interval\:of\:}\sum _{n=1}^{\infty \:}nx^n\mathrm{\:is\:}

-1<x<1

Answered by Anonymous
1

Explanation:

 \sf \: \sum _{n=1}^{\infty }nx^n \\  \\  \: \sf \red{\sum _{n=1}^{\infty } \: n \:  = x \times n}

Similar questions