Math, asked by papafairy143, 22 hours ago


  \sum_{r = 1 }^{n - 1} ( \frac{1}{ \sqrt{ {4n}^{2}  -  {r}^{2} } } )  \: as \: n \:  \to \:  \infty

Find the sum of above.​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\sum_{r=1}^{n-1}\sf  \frac{1}{ \sqrt{ {4n}^{2}  -  {r}^{2} } }  \:  \: as \: n \:  \to \:  \infty

can be rewritten as

\rm \:  =  \: \displaystyle\sum_{r=1}^{n-1}\sf  \frac{1}{ \sqrt{ {r}^{2} \bigg[4 - \dfrac{ {r}^{2} }{ {n}^{2} } \bigg]} }  \:  \: \: as \: n \:  \to \:  \infty

\rm \:  =  \:  \displaystyle \lim_{n \:  \to \:  \infty }\displaystyle\sum_{r=1}^{n-1}\sf  \frac{1}{r}  \frac{1}{ \sqrt{\bigg[4 - \dfrac{ {r}^{2} }{ {n}^{2} } \bigg]} }  \:  \:

Now, using limit as sum of definite integrals,

\rm :\longmapsto\:\dfrac{r}{n} \: changes \: to \: x

\rm :\longmapsto\:\dfrac{1}{n} \: changes \: to \: dx

\rm :\longmapsto\:\displaystyle \sf \lim_{n \to \infty} \sum \: changes \: to \: \int

\rm :\longmapsto\: \: lower \: limit \: a \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{1}{n} = 0

\rm :\longmapsto\: \: upper \: limit \: b \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{n - 1}{n} = \: 1

So, using all these, we get

\rm \:  =  \: \displaystyle\int_{0}^{1}  \sf \:  \frac{dx}{ \sqrt{4 -  {x}^{2} } }

\rm \:  =  \: \displaystyle\int_{0}^{1}  \sf \:  \frac{dx}{ \sqrt{ {2}^{2}  -  {x}^{2} } }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } } =  {sin}^{ - 1} \frac{x}{a} + c \: }}} \\

So, using this identity, we get

\rm \:  =  \:  {sin}^{ - 1} \dfrac{x}{2} \bigg| _{0}^{1}

\rm \:  =  \:  {sin}^{ - 1} \dfrac{1}{2} -  {sin}^{ - 1}0

\rm \:  =  \: \dfrac{\pi}{6}

Hence,

\rm\implies \:\:\boxed{\tt{ \displaystyle\sum_{r=1}^{n-1}\sf  \frac{1}{ \sqrt{ {4n}^{2}  -  {r}^{2} } }  \:  \: as \: n \:  \to \:  \infty  =  \dfrac{\pi}{6} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by OoAryanKingoO78
1

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\sum_{r=1}^{n-1}\sf  \frac{1}{ \sqrt{ {4n}^{2}  -  {r}^{2} } }  \:  \: as \: n \:  \to \:  \infty

can be rewritten as

\rm \:  =  \: \displaystyle\sum_{r=1}^{n-1}\sf  \frac{1}{ \sqrt{ {r}^{2} \bigg[4 - \dfrac{ {r}^{2} }{ {n}^{2} } \bigg]} }  \:  \: \: as \: n \:  \to \:  \infty

\rm \:  =  \:  \displaystyle \lim_{n \:  \to \:  \infty }\displaystyle\sum_{r=1}^{n-1}\sf  \frac{1}{r}  \frac{1}{ \sqrt{\bigg[4 - \dfrac{ {r}^{2} }{ {n}^{2} } \bigg]} }  \:  \:

Now, using limit as sum of definite integrals,

\rm :\longmapsto\:\dfrac{r}{n} \: changes \: to \: x

\rm :\longmapsto\:\dfrac{1}{n} \: changes \: to \: dx

\rm :\longmapsto\:\displaystyle \sf \lim_{n \to \infty} \sum \: changes \: to \: \int

\rm :\longmapsto\: \: lower \: limit \: a \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{1}{n} = 0

\rm :\longmapsto\: \: upper \: limit \: b \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{n - 1}{n} = \: 1

So, using all these, we get

\rm \:  =  \: \displaystyle\int_{0}^{1}  \sf \:  \frac{dx}{ \sqrt{4 -  {x}^{2} } }

\rm \:  =  \: \displaystyle\int_{0}^{1}  \sf \:  \frac{dx}{ \sqrt{ {2}^{2}  -  {x}^{2} } }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } } =  {sin}^{ - 1} \frac{x}{a} + c \: }}} \\

So, using this identity, we get

\rm \:  =  \:  {sin}^{ - 1} \dfrac{x}{2} \bigg| _{0}^{1}

\rm \:  =  \:  {sin}^{ - 1} \dfrac{1}{2} -  {sin}^{ - 1}0

\rm \:  =  \: \dfrac{\pi}{6}

Hence,

\rm\implies \:\:\boxed{\tt{ \displaystyle\sum_{r=1}^{n-1}\sf  \frac{1}{ \sqrt{ {4n}^{2}  -  {r}^{2} } }  \:  \: as \: n \:  \to \:  \infty  =  \dfrac{\pi}{6} \: }} \\

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Similar questions